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Outline 
• Introduction - electrokinetic particle movement 
• Electrokinetics – dielectrophoresis (DEP) of submicron-

sized dielectrically polarisable particle in non-uniform 
electric fields

• Polarisation mechanisms
• DEP basics & many particle movement
• Theoretical predictions/simulations
• Experimental measurements & quantification
• Examples: 

– Latex 216 nm diameter micro-spheres
– 12 kilo-base pair (~ 4 µm) DNA

• Comparison between theory and experiments
• Applications in genomics/proteomics
• DEP cell separation & other AC electrokinetics 



Introduction
• Motivation: controlled, non-contact, movement of sub-

micron/nanoscale bio-particles
• AC electrokinetics → movement of sub-micron particles using 

Alternating Current (AC) electric fields
• Sub-micron particles: colloidal suspensions: latex beads (model 

colloids – can bio-conjugate), viruses, DNA, proteins
• Polarisable particles: exhibit surface charge, or charged groups
• Dielectrophoresis (DEP): dipole induced by non-uniform AC 

electric fields (Pohl, 1978) → movement of a particle
• AC potentials applied to electrode structures micro-fabricated on 

glass avoid hydrolysis → use non-uniform electric fields
• Electrokinetic movement  → measure polarisability, applications in 

separation science, genomics & proteomics    



Polarisation mechanisms I
• polarisation – ‘intention’ of charges to move in response to 

externally applied electric field 

E

test particle

Maxwell-Wagner (M-W) 
interfacial polarisation

Charge accumulates at 
interface between dielectric 
particle & aqueous medium.

Counterion polarisation
Particle (e.g. DNA) attracts 
counterions. AC electric field 
causes tangential & radial  
movement of counterions.



Polarisation mechanisms II
• Maxwell-Wagner & counterion polarisation mechanisms depend 

on transit times of charges that respond to electric (E) field 
changes → frequency dependent effective polarisability, α(f)

• M-W polarisability:
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Dielectrophoresis (DEP) basics I
Uniform electric (E) field: neutral 
particle → polarises → Coulombic
forces → zero net force on body  
Non-uniform E field: Imbalance of
Coulombic forces at A & B →
neutral body moves (+ve DEP)

test particle
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induced (or effective) dipole moment (C m)



Dielectrophoresis (DEP) basics II
( )( , ) ( , ) ( , ), ( , ) ( , ) & gradDEPF x t p x t E x t p x t vE x tα= ⋅ ∇ = ∇ =

induced dipole moment p α effective dipole moment per unit volume & E

• α (or induced polarisability) depends on dielectric properties of particle & 
medium: α =  ± → can change direction of movement

Positive DEP: movement 
towards high field regions

particle α > medium α

Negative DEP: movement 
away from high field regions

particle α < medium α



DEP basics III
• E field induces & interacts with dipole → E 2

E field reversed – particle 
movement in same direction

Non-uniform field → net force →
movement to left (for +ve DEP)
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• Small-time average movement ∝ E 2 squared (i.e. not
dependent of E field direction & electrode polarity) → use AC 

• AC (> 10 kHz) – avoid hydrolysis  – microchip application 



Modelling DEP particle movement
• Explore DEP particle movement - single particle or ensemble
• Sub-micron size particles (bio-conjugated colloids, DNA,  proteins, 

viruses, etc) → Brownian motion (diffusion) 
• Ignore inertia, gravity & buoyancy forces
• Modified diffusion (or Fokker Planck) equation (FPE) describes 

space-time evolution of particle concentration c
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• Solve (1) - (3) → predict time-dependent DEP collections 



Positive DEP particle collections I

Inter-
digitated
electrode

array

h

+ve DEP

Glass cover-slipy

+ve DEP

diffusion

x
(i) t < 0

DEP off
(ii) 0 ≤ t ≤ t1 (iii)      t > t2

DEP on

• Key parameters for measuring +ve DEP particle collection
• initial DEP collection rate, dn(0)/dt - consider only DEP flux
• initial to steady-state transition, ∆n = n(∞) – n(0) - DEP & 

diffusion particle flux balance as t → ∞
• rise time τ



Positive DEP particle collections II

• Compile predicted collection time-profiles for 216 nm diameter 
latex beads for range of frequencies & voltages

0 t1 t2 Time t (s) 

Initial DEP 
collection rate Fluorescence F(t) essentially 

at steady state

∆F = F(∞) – F(0) ≅ F(t >> t2) – F(0)

Initial-to-steady state 
fluorescence change

Particle number 
n(t) (or 

fluorescence 
F(t))

(0)F

• Numerically solve (1) – (3) utilizing array geometric symmetry 
• Time-dependent diffusion-limited DEP collections simulated 

predicted by FPE system



Predicted +ve DEP collections
• Latex microspheres (beads) – model colloids e.g. 216 nm diameter
• can bio-conjugate – use for investigations in molecular biology

Vo = 0.6 V, f = 500 kHz
Vo = 0.6 V, f = 1.0  MHz

Vo = 0.6 V, f = 2.0  MHz
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• Compare with measured time-dependent DEP collection/relaxation 
experiments using fluorescence microscopy



DEP experiments I
• DEP collection of DNA onto interdigitated electrodes 

microfabricated using standard photolithography

Vertical, y

Transverse x
Longitudinal, z

+

Interdigitated electrodes

Fluorescently labelled colloidal particles or DNA
plasmids attracted onto planar interdigitated

electrode edges by +ve DEP force

Glass slide

Glass cover-slip

+

Microscope lens

+ –––

h
w d

UV

resist coating

Patterned mask

Develop resist pattern
Ti – Pd – Au evaporate

Acetone lift-off

Au
Pd
Ti

δe

Glass slide

~ 120 µm



DEP experiments II
 
 
 
 
 
 
 
 
 
 
 

TV 

AC signal 
generator 
& amplifier 

VCR
VC

∼ 10 µl solution 
micro-pipetted 
on electrode 

Micro-
scope

Oscilloscope

0 o1 8 0 o

Microfabricated separately 
addressable interdigitated
electrode array on PCB



DEP experiments: latex bead example
I(x)

(c)
x

10 µm  
width 10 µm gap

216 nm 
latex 

beads 
collect 
onto 

electrode 
edges

216 diameter nm 
latex beads 

suspended in 
solution

50 µm

(a) DEP off (b) DEP on

Transverse, x

Longitudinal, z

Typical fluorescence 
intensity I(x) ‘snapshot’ 
of DEP collections –
longitudinal average

Positive DEP collection of 216 nm diameter latex 
beads onto d = w = 10 µm interdigitated
electrodes (a) ~ 1 second before DEP force 
applied  (b) ~ 5 seconds after DEP force applied



Quantifying DEP collections I
• Periodic average along transverse, x, → w/2 + d + w/2
• Reflection, +  → ‘characteristic’ w/2 + d/2 intensity
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Quantifying DEP collections II
• Frame sequence of characteristic intensities → I(x,t)
• Transverse integration between selected lower & upper limits → IE (t)

Frame
number

w/2
d/2Half electrode 

width, half-gap Time t (s)
x

Multiple 
profiles 
super-

imposed

 

w/2 d/2
xl xu

lower 
limit

x

upper 
limit



Quantifying DEP collections III
• Normalise IE (t) to smooth → F (t ) = IE (t )/ IT (t )

0 5 10 15 20 25 30 35 40 45 
0.33

0.34

0.35

0.36

0.37

0.38

Time  t (s) = Frame number - 3 

 

Each ‘+’ represents 1 second
Lower limit xl = 43
Upper limit xu = 59
DEP starts at frame number =  3

Fluorescence 
intensity IE (t)

Light source fluctuations

Normalised fluorescence 
intensity F(t)

Curve fit to determine 
dF(0)/dt, ∆F , τ

→ dn(0)/dt, ∆n , τ

→ compare with 
theoretical predictions

Details of image processing method based on fluorescence microscopy & using 
geometrical properties of interdigitated electrode arrays is given in:
Bakewell, D J & Morgan, H (2001) and (2004)



Quantifying DEP collections IV
• Collections & relaxation of 216 nm diameter microspheres
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Latex microspheres I: theory vs experiment
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Experiment 2-D FPE simulation

(V)
Vo
(V)

Re{fCM}

0.5 2 9.4 58 0.6 0.74 13 150

1 2 8.9 48 0.6 0.64 11 130

2 2 4.6 29 0.6 0.38 5.1 19

2 4 18 62 1.2 0.38 20 160

2 2 4.1 32 0.6 0.38 5.1 19

2 1 1.6 4.2 0.3 0.38 1.3 1.0

• Theory & experiment concur qualitatively
• Using 3 replicates: dn(0)/dt & ∆n ↓ as f ↑ for FPE model and experiment 

⇒ polarisability ↓ - concurs with Re{fCM} trend
• Significantly lower Vo required in simulations than experiment
• Theory & experiment concur better for dn(0)/dt than ∆n

Comparisons between theory and experiment for DEP collections of 216 nm diameter latex beads



Latex microspheres II: theory vs experiment

• ~ 1 correlation for dn(0)/dt ratios between theory and experiment 
• Fluid motion around (and above) electrode edges confounds DEP 

collections
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Positive DEP collection of DNA I 

electrode width w = 10 µm
gap d = 10 µm

Longitudinal

Transverse

electrode
gap

DNA bridges across gaps

DNA appears amorphous (cloudy) 

DNA slightly drifts with fluid motion

(a) DEP off (b) DEP on

DNA suspended in 
solution

12 kbp plasmid
DNA – inter-
wound like a
“twisted elastic 
band” (4 µm 
contour length, 
~1 µm size)
+ve DEP →
stable trapping 
of DNA between 
electrodes

DAPI fluorescent labelled DNA plasmid suspension – half-frame 
width video images: (a) before onset of DEP and (b) 4.2 seconds 
after onset of DEP for Vo = 4.5 V, f = 200 kHz, σm = 5 mS/m



Positive DEP collection of DNA IIa

• DAPI labelled DNA plasmid suspension: video 
off/on DEP Vo = 4.5 V, f = 200 kHz, σm = 5 mS/m



Positive DEP collection of DNA IIb

• DAPI labelled DNA plasmid suspension: video off/on DEP Vo = 4.5 V, f = 500
kHz

• Challenges for image processing (array movement, fluorescent debris, etc) !
• DEP response is less than for 200 kHz (α reduced)



Positive DEP collection of DNA III
• DNA collection – transverse average over gap → collection time ‘profiles’
• Frequency dependent collection decreases as polarisability, α ↓ (or as 

frequency ↑) 
– initial collection rate dF(0)/dt
– initial to steady-state transition, ∆n

Recent analysis of DNA
• initial collection rate dF(0)/dt & initial to steady-state transition, ∆n, 

exhibit variations but can be distinguished for sufficient frequency 
differences

• Reproducibility within each experiment
• Dielectric spectroscopy – 3 dispersions 140 kHz, 2 MHz & 12 MHz → α

see Bakewell et al (2000) Biochem. Biophys. Acta, 1493, 151-158
• Comparison with theory – qualitative , quantitative 
• fluid motion confounds DEP collections
• details: Bakewell, D. J. & Morgan, H. Dielectrophoresis of DNA: time 

and frequency dependent collections on microelectrodes (submitted)



DEP & genomics/proteomics
• Low voltage ~ 10 V controlled DNA trap & release attractive for 

purifying & concentrating DNA prior to PCR amplification (Crippen et al 
2000)

• Surface of latex beads can be chemically modified to attach DNA,
enzymes etc → ‘molecular surgery’

• Use positive and negative DEP for cell separation
– applications in environment e.g. detection of bacteria in water
– improve cell type homogeneity prior to micro-array gene 

expression analysis (Cheng, et al, 1998; Huang, et al, 2002)
– DEP can alter gene expression but effects can be taken into 

account
• ‘Indirect’ application: 

– microfluidic circulation can improve oligonucleotide hybridisation 
efficiency for DNA microarrays (Yuen et al 2003) 

– assembly of micro-wires (Hermanson et al, 2001)



DEP – cell separation
Electrode widths = 40 µm

THP-1 cells

Blood cells
Direction of 

fluid flow

Cells are pre-focused 
by –ve DEP

• Courtesy D. Holmes & 
H. Morgan



DEP cell sorting principle

• 6 µm diameter latex microsphere  



Other AC electrokinetics
• Electro-rotation - changing frequency reverses rotation 

of cell

• Courtesy of N. Green & H. Morgan (Uni. of Southampton)

• Travelling wave dielectrophoresis



AC electrokinetic summary
• Polarisation & E induced polarisability
• focus on DEP aspect of AC electrokinetics

– particle α > medium α → +ve DEP (attracted to high E regions)
– particle α < medium α → -ve DEP (repelled from high E regions)

• DEP collections on to planar interdigitated electrode arrays
– FPE modelling
– experimental set-up using fluorescent microscopy

• Example particle collections onto planar interdigitated electrode arrays 
– +ve DEP collections of 216 nm diameter latex microspheres (beads)
– +ve DEP collections of 12 kbp plasmid DNA

• Theory & experiment qualitatively concur  quantitative 
• Discrepancies - electro-osmotic fluid – needs further investigation
• Demonstrate – collection characterisation & trapping of DNA & beads
• Apply same principles to proteins, mammalian cells, bacteria, etc 
• Applications of DEP to genomics/proteomics include methods for DNA 

concentration, cell sorting, prior to microarray analysis, etc. 
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