Applications of AC electrokinetic methods to genomics and proteomics

David J Bakewell

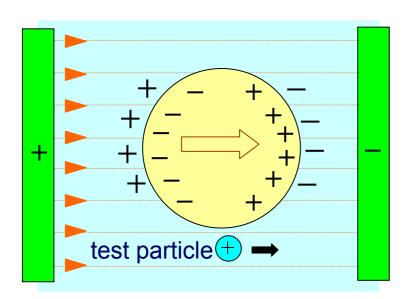
Bioinformatics Centre, Beatson Laboratories CR-UK, Garscube Estate, Glasgow, Scotland

(formerly Bioelectronics Research Centre, Department of Electronics & Electrical Engineering, University of Glasgow)

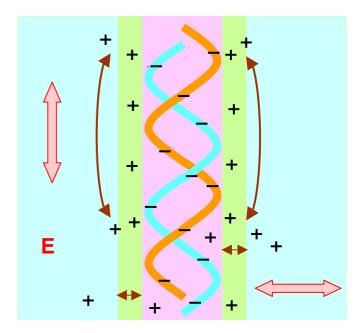
ORS Awards Scheme

Outline

- Introduction electrokinetic particle movement
- Electrokinetics dielectrophoresis (DEP) of submicronsized dielectrically polarisable particle in non-uniform electric fields
- Polarisation mechanisms
- DEP basics & many particle movement
- Theoretical predictions/simulations
- Experimental measurements & quantification
- Examples:
 - Latex 216 nm diameter micro-spheres
 - 12 kilo-base pair (~ 4 μm) DNA
- Comparison between theory and experiments
- Applications in genomics/proteomics
- DEP cell separation & other AC electrokinetics


Introduction

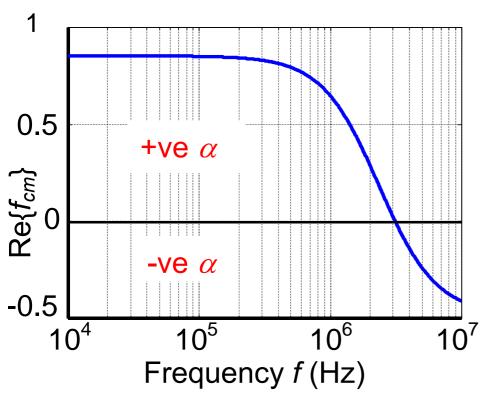
- Motivation: controlled, non-contact, movement of submicron/nanoscale bio-particles
- AC electrokinetics → movement of sub-micron particles using Alternating Current (AC) electric fields
- Sub-micron particles: colloidal suspensions: latex beads (model colloids – can bio-conjugate), viruses, DNA, proteins
- Polarisable particles: exhibit surface charge, or charged groups
- Dielectrophoresis (DEP): dipole induced by non-uniform AC electric fields (Pohl, 1978) → movement of a particle
- AC potentials applied to electrode structures micro-fabricated on glass avoid hydrolysis → use non-uniform electric fields
- Electrokinetic movement → measure polarisability, applications in separation science, genomics & proteomics


Polarisation mechanisms I

polarisation – 'intention' of charges to move in response to

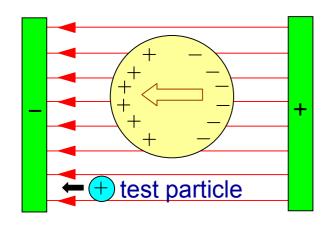
externally applied electric field

Maxwell-Wagner (M-W) interfacial polarisation
Charge accumulates at interface between dielectric particle & aqueous medium.

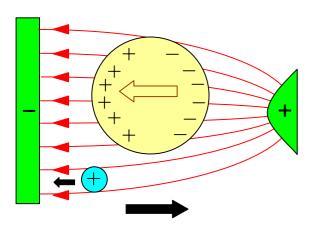


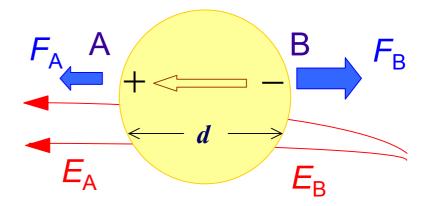
Counterion polarisation

Particle (e.g. DNA) attracts counterions. AC electric field causes tangential & radial movement of counterions.


Polarisation mechanisms II

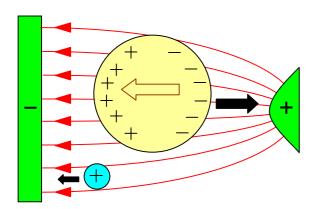
- Maxwell-Wagner & counterion polarisation mechanisms depend on transit times of charges that respond to electric (E) field changes → frequency dependent effective polarisability, α(f)
- M-W polarisability: $\alpha(\omega) = 3\varepsilon_m \operatorname{Re} \{ (\underline{\varepsilon}_p^* \underline{\varepsilon}_m^*) / (\underline{\varepsilon}_p^* + 2\underline{\varepsilon}_m^*) \}$


Claussius-Mossotti f_{CM} where Re = Real part, $\varepsilon^* = \varepsilon - j\sigma/\omega$, $\varepsilon = \text{permittivity}$, σ = conductivity, p = particle, $m = medium \ and \ \omega = 2\pi f$ $Re\{f_{CM}\}$ for 216 nm diameter latex spheres in low $\sigma_{\rm m}$ = 1.7 mS m ⁻¹ changes sign near 3 MHz

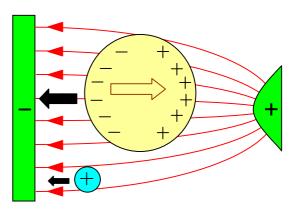

Dielectrophoresis (DEP) basics I

Uniform electric (E) field: neutral particle \rightarrow polarises \rightarrow Coulombic forces \rightarrow zero net force on body

Non-uniform E field: Imbalance of Coulombic forces at A & B \rightarrow neutral body moves \checkmark (+ve DEP)

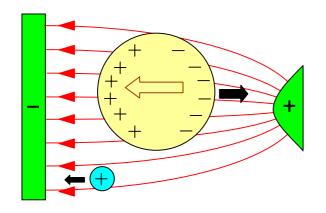

induced (or effective) dipole moment (C m)

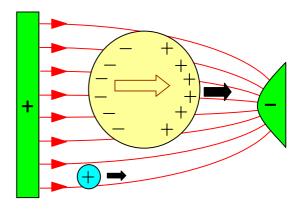
$$\vec{F}_{particle} = q\vec{E}_A - q\vec{E}_B = q(E_B - E_A) = q(E(x+d) - E(x)) \cong \vec{q}\vec{d}\frac{dE}{dx}$$


Dielectrophoresis (DEP) basics II

$$\vec{F}_{DEP}(\underline{x},t) = (\vec{p}(\underline{x},t) \cdot \vec{\nabla}) \vec{E}(\underline{x},t), \ \vec{p}(\underline{x},t) = \alpha v \vec{E}(\underline{x},t) \& \vec{\nabla} = \text{grad}$$
induced dipole moment \vec{p} α effective dipole moment per unit volume & \vec{E}

• α (or induced polarisability) depends on dielectric properties of particle & medium: $\alpha = \pm \rightarrow$ can change direction of movement


Positive DEP: movement towards high field regions particle α > medium α



Negative DEP: movement away from high field regions particle α < medium α

DEP basics III

• E field induces & interacts with dipole $\rightarrow E^2$

Non-uniform field → net force → movement to left (for +ve DEP)

E field reversed – particle movement in same direction

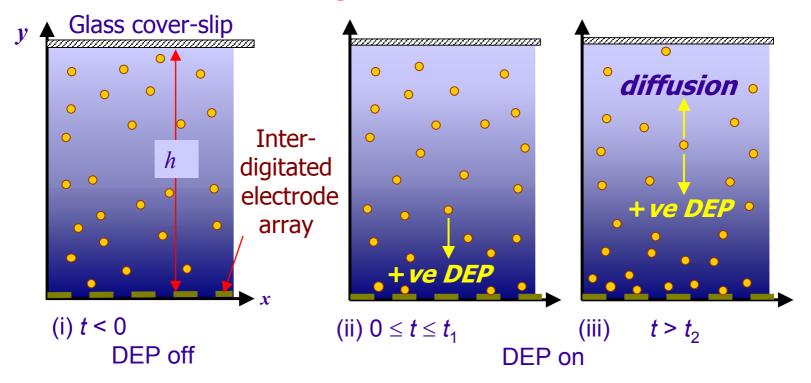
$$\sim E \rightarrow \vec{F}_{DEP}(\underline{x}) = \left\langle \frac{1}{2} \alpha v \vec{\nabla} \left| \vec{E}(\underline{x}) \right|^2 \cos^2(\omega t) \right\rangle_{\sim t_{av}} = \frac{1}{4} \alpha v \vec{\nabla} \left| \vec{E}(\underline{x}) \right|^2$$

- Small-time average movement

 E 2 squared (i.e. not dependent of E field direction & electrode polarity)

 use AC
- AC (> 10 kHz) avoid hydrolysis microchip application ✓

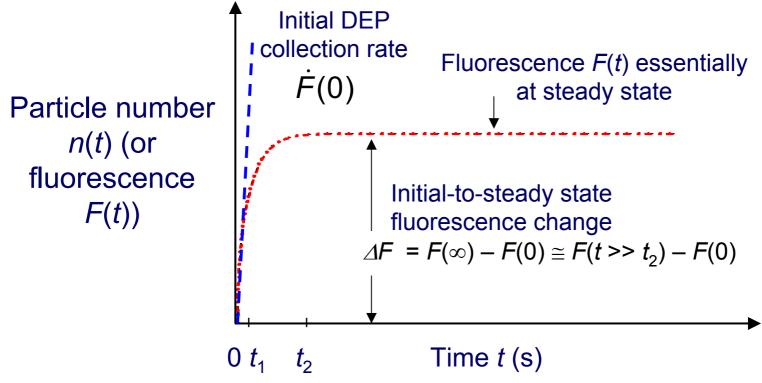
Modelling DEP particle movement


- Explore DEP particle movement single particle or ensemble
- Sub-micron size particles (bio-conjugated colloids, DNA, proteins, viruses, etc) → Brownian motion (diffusion)
- Ignore inertia, gravity & buoyancy forces
- Modified diffusion (or Fokker Planck) equation (FPE) describes space-time evolution of particle concentration c

$$\frac{\partial c(\underline{x},t)}{\partial t} = -\vec{\nabla}.(\vec{J}_{DEP} + \vec{J}_{diff}) = -\frac{1}{\zeta} \vec{\nabla}.(c(\underline{x},t)\vec{F}_{DEP}(\underline{x})) + \vec{k}_B \vec{T} \vec{\nabla}^2 c(\underline{x},t) (1)$$
Solve Laplace's eqn
$$\rightarrow \text{ array geometry}$$

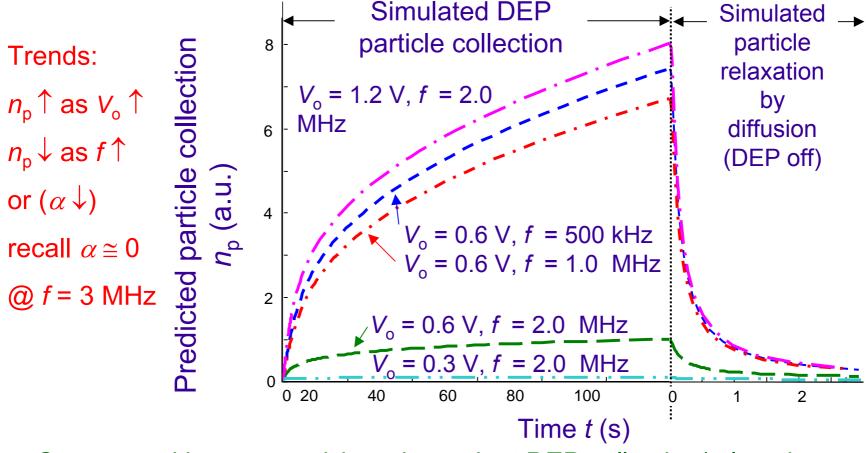
$$\vec{F}_{DEP}(\underline{x}) = \frac{1}{4} \alpha(\omega) vk(\underline{x}) V_0^2 (2) \qquad n_p(t) = \int_{Vol} c(\underline{x},t) d\underline{x} (3)$$

• Solve (1) - (3) → predict time-dependent DEP collections


Positive DEP particle collections I

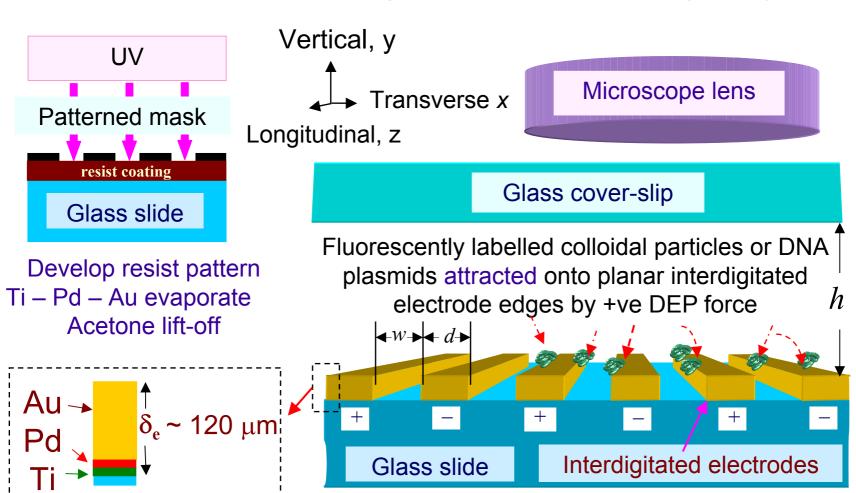
- Key parameters for measuring +ve DEP particle collection
 - initial DEP collection rate, dn(0)/dt consider only DEP flux
 - initial to steady-state transition, $\Delta n = n(\infty) n(0)$ DEP & diffusion particle flux balance as $t \to \infty$
 - rise time τ

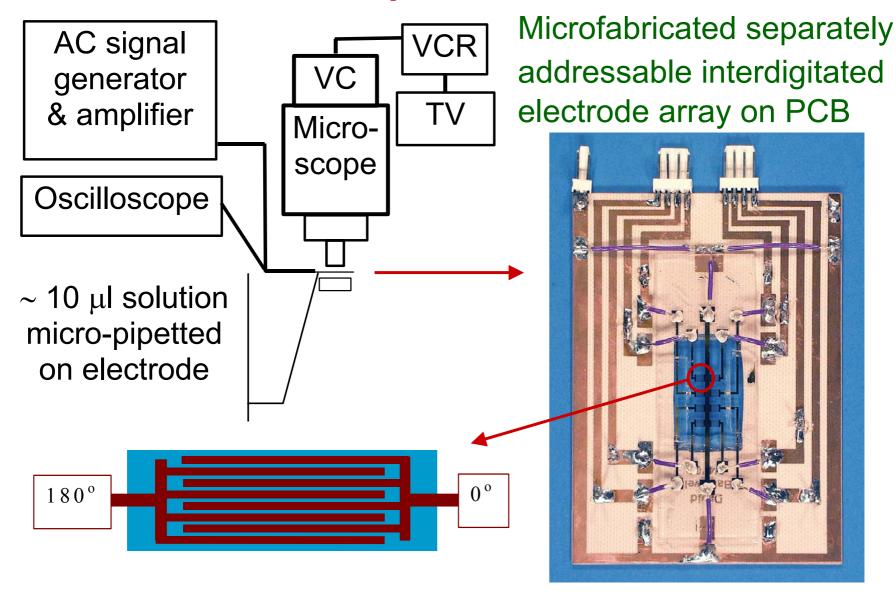
Positive DEP particle collections II


- Numerically solve (1) (3) utilizing array geometric symmetry
- Time-dependent diffusion-limited DEP collections simulated predicted by FPE system

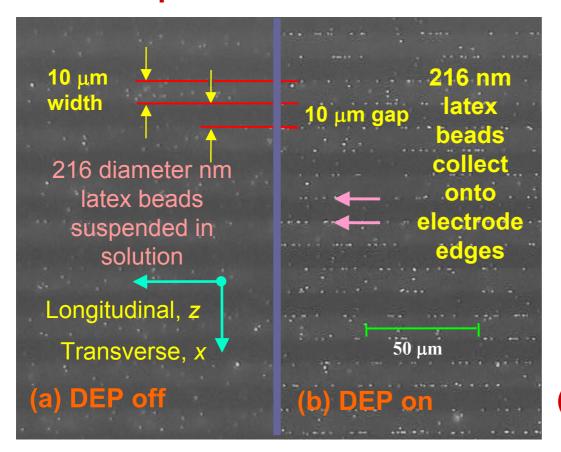
 Compile predicted collection time-profiles for 216 nm diameter latex beads for range of frequencies & voltages

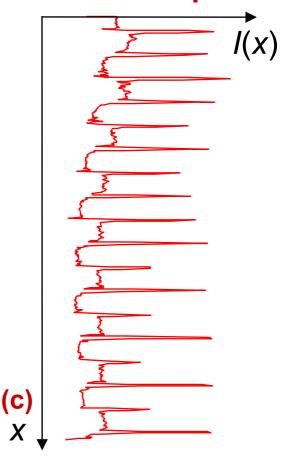
Predicted +ve DEP collections


- Latex microspheres (beads) model colloids e.g. 216 nm diameter
- can bio-conjugate use for investigations in molecular biology


Compare with measured time-dependent DEP collection/relaxation experiments using fluorescence microscopy

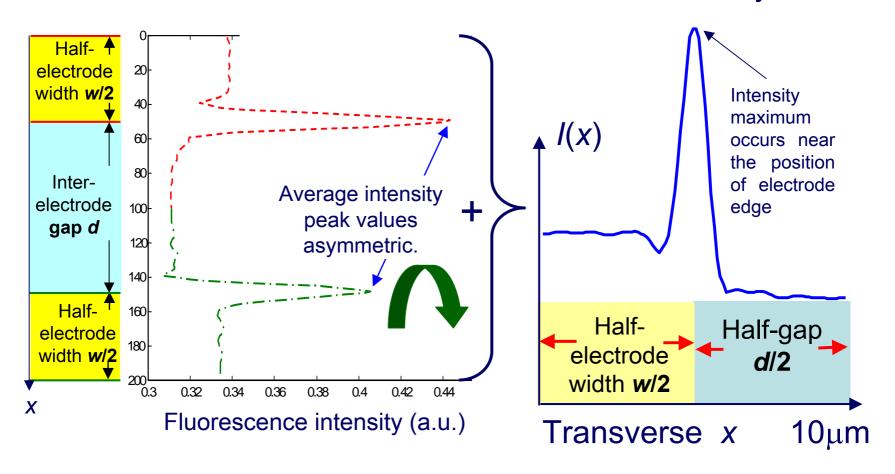
DEP experiments I


 DEP collection of DNA onto interdigitated electrodes microfabricated using standard photolithography



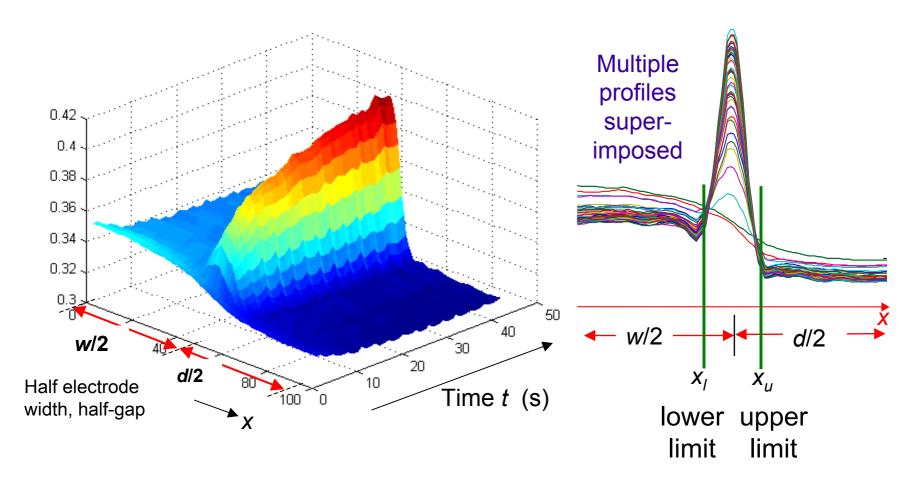
DEP experiments II

DEP experiments: latex bead example

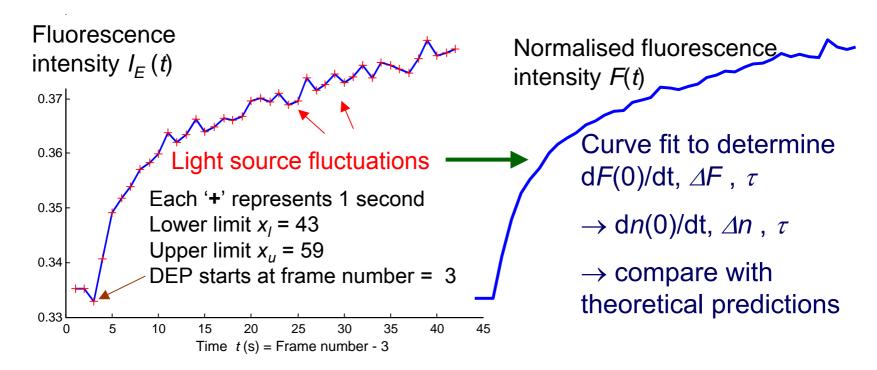


Positive DEP collection of 216 nm diameter latex beads onto $d=w=10~\mu m$ interdigitated electrodes (a) ~ 1 second before DEP force applied (b) ~ 5 seconds after DEP force applied

Typical fluorescence intensity *I*(*x*) 'snapshot' of DEP collections – longitudinal average


Quantifying DEP collections I

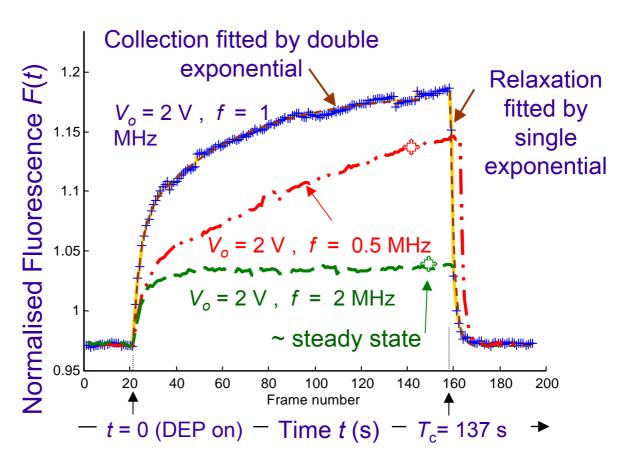
- Periodic average along transverse, x, → w/2 + d + w/2
- Reflection, + → 'characteristic' w/2 + d/2 intensity


Quantifying DEP collections II

- Frame sequence of characteristic intensities $\rightarrow I(x,t)$
- Transverse integration between selected lower & upper limits $\rightarrow I_E(t)$

Quantifying DEP collections III

Normalise I_E (t) to smooth → F (t) = I_E (t)/I_T (t)



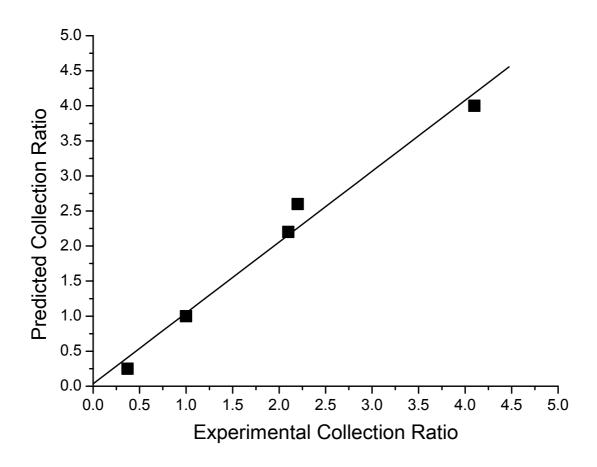
Details of image processing method based on fluorescence microscopy & using geometrical properties of interdigitated electrode arrays is given in: Bakewell, D J & Morgan, H (2001) and (2004)

Quantifying DEP collections IV

Collections & relaxation of 216 nm diameter microspheres

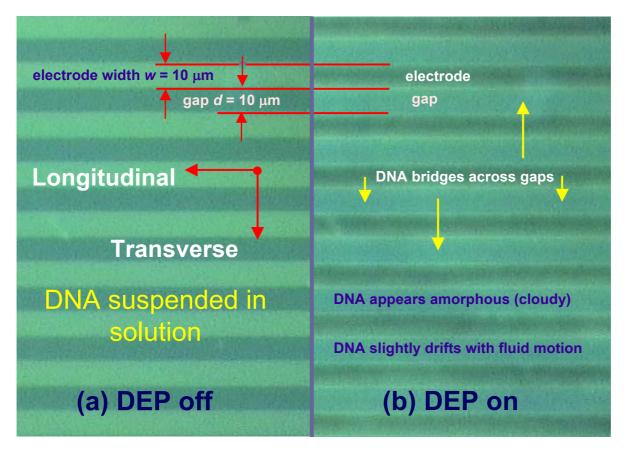
Collection profiles exhibit variation – need ≥ 3 replicates for each V_o & f

• To compare experiment with simulation: $\dot{F}(0)$ & $\Delta F \rightarrow \frac{\dot{n}_e(0)}{n_e(0)}$ & $\frac{\Delta n_e(120)}{n_e(0)}$


Latex microspheres I: theory vs experiment

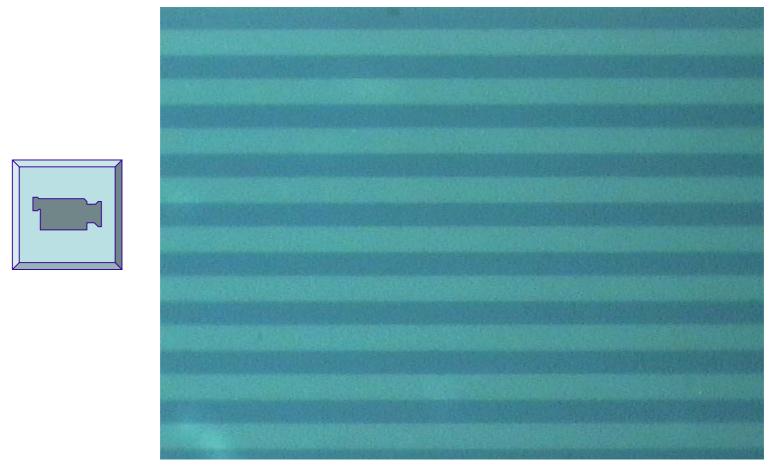
f (MHz)	Experiment			2-D FPE simulation			
	(V)	$\frac{\dot{n}_e(0)}{n_e(0)}$	$\frac{\Delta n_e(120)}{n_e(0)}$	V _o (V)	Re{f _{CM} }	$\frac{\dot{n}_p(0)}{n_p(0)}$	$\frac{\Delta n_p (120)}{n_p (0)}$
0.5	2	9.4	58	0.6	0.74	13	150
1	2	8.9	48	0.6	0.64	11	130
2	2	4.6	29	0.6	0.38	5.1	19
2	4	18	62	1.2	0.38	20	160
2	2	4.1	32	0.6	0.38	5.1	19
2	1	1.6	4.2	0.3	0.38	1.3	1.0

Comparisons between theory and experiment for DEP collections of 216 nm diameter latex beads

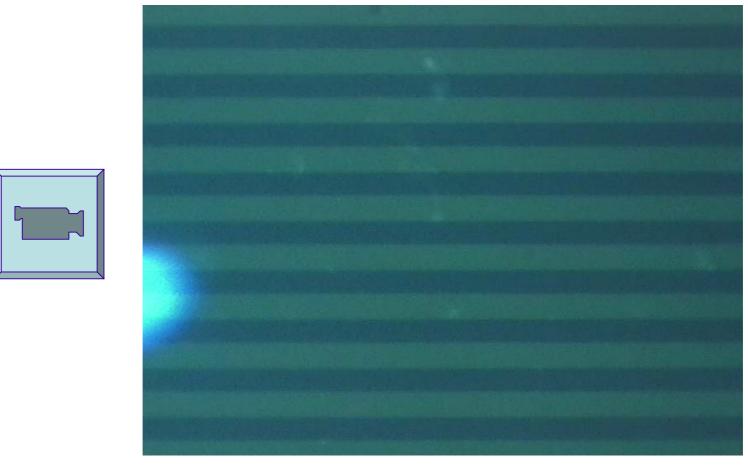

- Theory & experiment concur qualitatively
- Using 3 replicates: $dn(0)/dt \& \Delta n \downarrow as f \uparrow$ for FPE model and experiment \Rightarrow polarisability \downarrow concurs with Re $\{f_{\text{CM}}\}$ trend
- Significantly lower V_0 required in simulations than experiment
- Theory & experiment concur better for dn(0)/dt than Δn

Latex microspheres II: theory vs experiment

- \sim 1 correlation for dn(0)/dt ratios between theory and experiment
- Fluid motion around (and above) electrode edges confounds DEP collections


Positive DEP collection of DNA I

12 kbp plasmid
DNA – interwound like a
"twisted elastic
band" (4 μm
contour length,
~1 μm size)
+ve DEP →
stable trapping
of DNA between
electrodes


DAPI fluorescent labelled DNA plasmid suspension – half-frame width video images: (a) before onset of DEP and (b) 4.2 seconds after onset of DEP for V_0 = 4.5 V, f = 200 kHz, σ_m = 5 mS/m

Positive DEP collection of DNA IIa

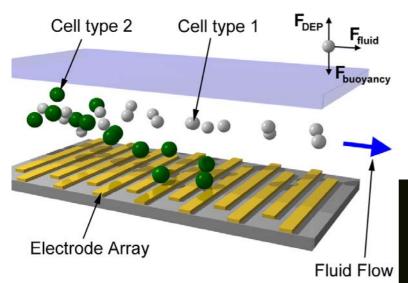
• DAPI labelled DNA plasmid suspension: video off/on DEP $V_{\rm o}$ = 4.5 V, f = 200 kHz, $\sigma_{\rm m}$ = 5 mS/m

Positive DEP collection of DNA IIb

- DAPI labelled DNA plasmid suspension: video off/on DEP V_o = 4.5 V, f = 500 kHz
- Challenges for image processing (array movement, fluorescent debris, etc)!
- DEP response is less than for 200 kHz (α reduced)

Positive DEP collection of DNA III

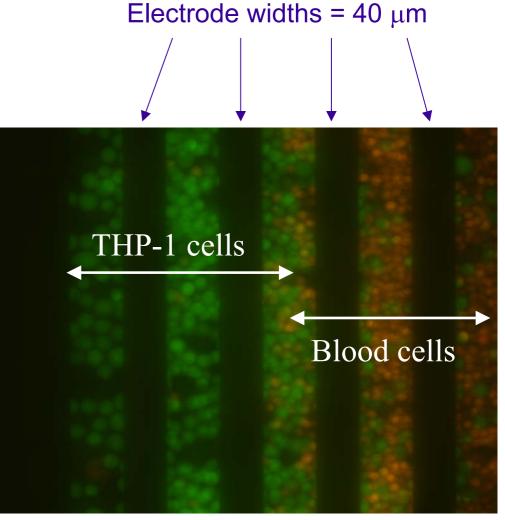
- DNA collection transverse average over gap → collection time 'profiles'
- Frequency dependent collection decreases as polarisability, $\alpha \downarrow$ (or as frequency \uparrow)
 - initial collection rate dF(0)/dt
 - initial to steady-state transition, △n

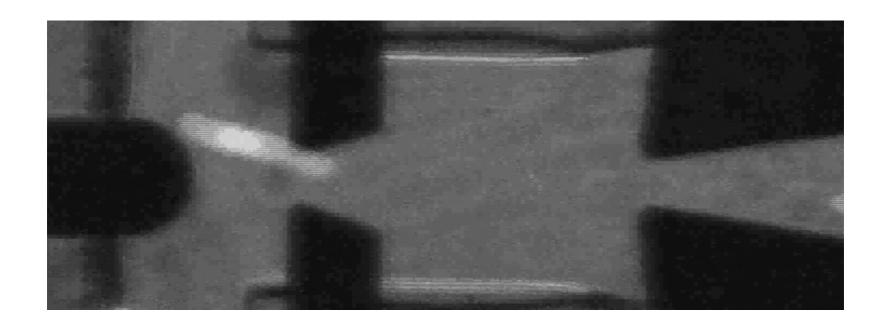

Recent analysis of DNA

- initial collection rate dF(0)/dt & initial to steady-state transition, △n, exhibit variations but can be distinguished for sufficient frequency differences
- Reproducibility within each experiment
- Dielectric spectroscopy 3 dispersions 140 kHz, 2 MHz & 12 MHz $\rightarrow \alpha$ see Bakewell et al (2000) Biochem. Biophys. Acta, **1493**, 151-158
- Comparison with theory qualitative ✓, quantitative X
- fluid motion confounds DEP collections
- details: Bakewell, D. J. & Morgan, H. Dielectrophoresis of DNA: time and frequency dependent collections on microelectrodes (submitted)

DEP & genomics/proteomics

- Low voltage ~ 10 V controlled DNA trap & release attractive for purifying & concentrating DNA prior to PCR amplification (Crippen et al 2000)
- Surface of latex beads can be chemically modified to attach DNA, enzymes etc → 'molecular surgery'
- Use positive and negative DEP for cell separation
 - applications in environment e.g. detection of bacteria in water
 - improve cell type homogeneity prior to micro-array gene expression analysis (Cheng, et al, 1998; Huang, et al, 2002)
 - DEP can alter gene expression but effects can be taken into account
- 'Indirect' application:
 - microfluidic circulation can improve oligonucleotide hybridisation efficiency for DNA microarrays (Yuen et al 2003)
 - assembly of micro-wires (Hermanson et al, 2001)

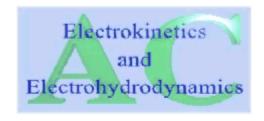

DEP – cell separation


Cells are pre-focused by –ve DEP

Direction of fluid flow

Courtesy D. Holmes & H. Morgan

DEP cell sorting principle



• 6 μm diameter latex microsphere

Other AC electrokinetics

Electro-rotation - changing frequency reverses rotation of cell

University of Glasgow

Electrorotation of cells

- Courtesy of N. Green & H. Morgan (Uni. of Southampton)
- Travelling wave dielectrophoresis

AC electrokinetic summary

- Polarisation & E induced polarisability
- focus on DEP aspect of AC electrokinetics
 - particle α > medium α \rightarrow +ve DEP (attracted to high *E* regions)
 - particle α < medium $\alpha \rightarrow$ -ve DEP (repelled from high *E* regions)
- DEP collections on to planar interdigitated electrode arrays
 - FPE modelling
 - experimental set-up using fluorescent microscopy
- Example particle collections onto planar interdigitated electrode arrays
 - +ve DEP collections of 216 nm diameter latex microspheres (beads)
 - +ve DEP collections of 12 kbp plasmid DNA
- Theory & experiment qualitatively concur ✓ quantitative X
- Discrepancies electro-osmotic fluid needs further investigation
- Demonstrate collection characterisation & trapping of DNA & beads
- Apply same principles to proteins, mammalian cells, bacteria, etc.
- Applications of DEP to genomics/proteomics include methods for DNA concentration, cell sorting, prior to microarray analysis, etc.

References

- * see special issue *IEEE Eng. Med. Biol.*, **22**, 6 (2003) Micromedicine: sorting cells and finding bugs with micro- and nanoelectrokinetics.
- BAKEWELL, D. J. and MORGAN, H. (2001) Measuring the frequency dependent polarisability of colloidal particles from dielectrophoretic collection data. *IEEE Trans. Diel. & Elec. Ins.* **8**, 3, 566-571.
- BAKEWELL, D. J. and MORGAN, H. (2004) Quantifying dielectrophoretic collections of submicron particles on microelectrodes. *Meas. Sci. Technol.* **15**, 254-266.
- CRIPPEN, S. M., HOLL, M. R., and MELDRUM, D. R. (2000) Examination of dielectrophoretic behaviour of DNA as a function of frequency from 30 Hz to 1 MHz using a flexible microfluidic test apparatus. *Proc. Micro Total Analysis Systems* (Ed. A. van den berg *et al.*) 529-532.
- GREEN, N. G., RAMOS, A., GONZALEZ, A., MORGAN, H. and CASTELLANOS, A. (2000) Fluid flow induced by nonuniform AC electric fields in electrolytic solutions on microelectrodes. Part I: Experimental measurements. *Phys. Rev. E*, **61**, 4011-4018.
- HERMANSON, K. D., LUMSDON, S. O., WILLIAMS, J. P., KALER, E. W. and VELEV, O. D. (2001) Dielectrophoretic assembly of electrically functional microwires from nanoparticle suspensions. *Science*, **294**, 1082-1086.
- HUANG, Y., JOO, S., DUHON, M., HELLER, M., WALLACE, B., and XU, X. (2002) Dielectrophoretic cell separation and gene expression profiling on microelectronic chip arrays. *Anal. Chem.* **74**, 3362-3371.
- MORGAN, H. and GREEN, N. (2003) AC electrokinetics: colloids and nanoparticles. Research Studies Press, UK.
- POHL, H. A. (1978) *Dielectrophoresis*. Cambridge University Press, Cambridge, UK.

Acknowledgements

- Presentation preparation: Dr. K. Vass, Bioinformatics Centre, Beatson Laboratories CR-UK, Garscube Estate, Glasgow, UK.
- Supervision, advice and cell separation images: Prof. H. Morgan, Drs. D. Holmes, N. Green and I. Ermolina, School of Electronics and Computer Science, University of Southampton, UK.
- Microfabication & laboratory experiments: staff at Bioelectronics Research Centre, Department of Electronics & Electrical Engineering, University of Glasgow, UK.

CVCP UK

